
Learning Depth Completion of Transparent Objects using Augmented
Unpaired Data

Floris Erich, Bruno Leme, Noriaki Ando, Ryo Hanai, Yukiyasu Domae

Abstract— We propose a technique for depth completion of
transparent objects using augmented data captured directly
from real environments with complicated geometry. Using cyclic
adversarial learning we train translators to convert between
painted versions of the objects and their real transparent
counterpart. The translators are trained on unpaired data,
hence datasets can be created rapidly and without any manual
labeling. Our technique does not make any assumptions about
the geometry of the environment, unlike SOTA systems that
assume easily observable occlusion and contact edges, such
as ClearGrasp. We show how our technique outperforms
ClearGrasp in a dishwasher environment, in which occlusion
and contact edges are difficult to observe. We also show how
the technique can be used to create an object manipula-
tion application with a humanoid robot. Supplementary URI:
https://florise.github.io/faking depth web/.

I. INTRODUCTION

The manipulation of transparent objects in complex envi-
ronments has been a topic of interest for the past decades,
due to the limited ability of commodity RGBD sensors to
estimate the depth of objects that are non-Lambertian. Saxena
et al. showed translucent object manipulation in a dishwasher
environment using a neural network in 2008 [1]. Lysenkov et
al. presented a system for manipulating transparent objects
by matching noise in depth maps to pre-measured CAD
models of the objects in 2012 [2, 3]. Various works have
tried to use synthetic data captured from simulation and
rendering, one of the most prominent being ClearGrasp,
which was introduced by Sajjan et al. [4]. Other works
have used the ClearGrasp dataset while improving the depth
estimation method [5]. These methods have as limitation that
they require manual modeling of the transparent objects that
are to be manipulated and/or the environment in which the
manipulation will take place, or require models of highly
similar objects and environments.

There are also various works that focus on grasp point
generation for transparent objects instead of depth comple-
tion [6, 7, 8], but depth completion of transparent objects has
as benefit that it allows the application of existing point-cloud
based techniques for downstream tasks. Some works use
specific sensors that are not typically found in robot systems,
such as Light Field Cameras [8], polarization cameras [9]
or background projections [10], but in this work we use
a low cost RGBD sensor (Intel RealSense D405) that is
commonly found in commercial robots. Other works use

Floris Erich, Noriaki Ando, Ryo Hanai and Yukiyasu Domae are with the
Industrial CPS Research Center, National Institute of Advanced Industrial
Science and Technology, Japan. Bruno Leme is with the Horticultural
Sciences Department, University of Florida, USA. Floris Erich is the corre-
sponding author and can be reached at [first name].[last name]@aist.go.jp.

markers and object models to create datasets of matching
transparent RGB and Depth [11, 12], however in this case
the markers remain part of the data or additional effort is
required to remove the markers from the dataset, whereas in
this work we have separate datasets for transparent objects
and for augmented objects. Yet other works focus mostly
on transparent surfaces [13] instead of objects, or transpar-
ent object segmentation instead of depth estimation [14].
In recent years Neural Radiance Fields (NeRF) [15] have
enabled transparent object depth estimation from RGB data
and manipulation without any prior training [16, 17, 18,
19], but at inference time techniques that use NeRF require
multiple views of a scene and known camera extrinsics per
view, whereas in this work we only require a single view at
inference time.

Our main contribution is a technique for transparent object
depth completion based on adversarial learning with cycle
constraints (CycleGAN) which is trained using a set of
views of transparent objects and a set of views of opaque
clones. The opaque clones are the transparent objects aug-
mented by painting them, so that they still have a similar
shape as the objects that are to be manipulated, but do not
exhibit the aspects that negatively affect depth detection.
Our method learns a function that can convert sensor mea-
surements (Depth or RGBD) of the augmented objects to
and from sensor measurements of the original transparent
objects. CycleGAN-based techniques have been applied in
robotics before, in works such as RL-CycleGAN [20] and
RetinaGAN [21]. In both cases the technique was used for
sim2real transfer, whereas to our knowledge we are the first
to apply the CycleGAN technique for “real2real” transfer in
robotics. Adversarial learning has been applied to transparent
object depth completion before, but only in a supervised
setting [22]. Figure 1 shows an overview of our method.
All training data is created by recording data from the real
environment using the RGBD camera that is also used in
the manipulation application. Unlike previous approaches the
training data does not have to be paired with labeled ground
truth data. Training data is split into a set of samples of
transparent objects and a set of samples of the opaque clones.
Transparent object samples contain color information of the
objects that we want to manipulate, while the opaque clone
samples contain the depth data that we want to associate with
the transparent object samples. Depth data for transparent
object samples is noisy and practically unusable as sole
input for robot manipulation, while the color data for opaque
clone samples is only useful at training time. Both datasets
should be comparable in terms of environment and the

https://florise.github.io/faking_depth_web/


Fig. 1: Two cyclic adversarial training conditions were tested,
direct depth to depth and RGBD to RGBD. For each both
a U-Net inspired model and a ResNet inspired model were
used for the generator architecture. Because we have used
cyclic adversarial training, it is not required for samples to
be paired.

types of objects used, but our technique does not require
matching sensor transformation or object transformations
between samples.

We have publicly released the datasets and neural network
source code. Both can be found in the supplementary ma-
terials accessible via the URI in the abstract. We hope that
other researchers can use the dataset and/or neural network
source code to create new methods for unpaired training of
transparent object depth completion methods.

II. METHOD

A. Adversarial loss

A Generative Adversarial Network (GAN) is a combina-
tion of a generator G : X → Y and discriminator D : Y →
{Real, Fake}, in which the generator tries to learn how
to generate realistic samples, while the discriminator tries
to learn how to distinguish between real samples y ∼ Y
and generated samples G(x) [23]. In an ordinary GAN, x
is a vector sampled from a random distribution X . The
discriminator is trained to minimize its error on correctly
identifying real samples as real while maximizing its error
on incorrectly identifying generated samples as real. The
objective function can be described as a minimax game:

g∗ = argmin
G

max
D

Ey∼Y logD(y)+Ex∼X log(1−D(G(x)))

In practice, we use the LSGAN loss functions [24] with
a = 0, b = 1, c = 1, which separately defines the
generator loss for a single sample x ∼ X as LG(D,G, x) =
(D(G(x))− 1)2 and the discriminator loss for a single
pair of samples x ∼ X, y ∼ Y as LD(D,G, x, y) =
(D(y)− 1)2 +D(G(x))

2. Whereas in an ordinary GAN the
generator is given a random vector as input, we want the
generator to act as a translator, hence X is instead a source
domain containing samples that we want to translate to a
target domain Y .

B. Cyclic loss

G(x) should not only look like it was sampled from Y , but
it should also maintain its structure from X . To accomplish
this we follow the CycleGAN approach [25] and introduce an
inverse mapping F : Y → X and add constraints that force a
network to maintain details for performing the inverse map-
ping, i.e. G(F(y)) ≈ y and F(G(x)) ≈ x. To enable our net-
work to learn this, we adopt cyclic losses: LCyc(G,F, x) =
∥F(G(x))− x∥1. This loss is applied bidirectionally, i.e.
LCyc(G,F, x, y) = LCyc(G,F, x) + LCyc(F,G, y). To train
a network that approximates F, we also need to introduce
a discriminator DF that tries to learn whether samples are
from X or generated using the translator F.

C. Identity loss

To encourage G and F to not change background data
for their inputs (which should remain the same for both
domains), we need to assure that G(y) ≈ y and F(x) ≈ x.
In other words, if an input is already in the right output
domain for the translator, then the translator should have
no effect. We accomplish this using identity losses [26]:
L

Identity
G (G, y) = ∥G(y)− y∥1 and L

Identity
F (F, x) =

∥F(x)− x∥1.

D. Complete loss functions

For brevity we only show the loss functions for the X →
Y mapping. Combining the adversarial loss, cyclic loss and
identity loss, we now have the following loss functions for
the translators:

LGX→Y
(G,F,D, x, y) = Λ1LG(D,G, x) (1)

+ Λ2L
Cyc(G,F, x, y) (2)

+ Λ3L
Identity
G (G, y) (3)

GAN loss weight Λ1 and identity loss weight Λ3 are 1.0
and 0.5, respectively. Initial cyclic loss weight Λ2 is 10.0
and linearly decays to 1.0 at epoch 90. The weights were
adopted from the original CycleGAN paper and manually
tuned. The weight decay strategy was suggested by Wang
and Lin [27].

The loss for the discriminator is defined as follows:

LDY
(D,G) = (D(y)− 1)2 +D(G(x))

2

Swapping x and y, X and Y , G and F gives the generator
loss and discriminator loss for the Y → X mapping.



TABLE I: Drinking glasses with dimensions in mm

Object Wine Tall Mid Low Slim

Picture
Height 200 184 122 82 105
Top � 62 82 80 80 50

Bottom � 71 60 54 50 50

E. Network architectures

We perform our experiments with both U-Net and ResNet
for the generator network architecture and PatchGAN for
the discriminator network architecture. Zhu et al. [25] use
a custom architecture with residual blocks, but we have
experienced faster training times while maintaining similar
validation loss using a U-Net architecture [28] for the gener-
ator, as originally proposed by Isola et al. [29]. Our network
architectures and further training details can be found in the
appendix.

III. EXPERIMENTS

A. Dataset creation method

Our test environment is a single level dishwasher, as
can be found in restaurants and convenience stores. We
created 60 configurations of transparent drinking glasses,
and 60 configurations of opaque clones, using the same five
object types (see Table I), with at most three of each object
type in a scene. In each configuration we vary the position
and amount of objects. To create the opaque clones, we
spray painted the objects with a brown stone pattern. For
each configuration we captured approximately 500 RGBD
samples with shape 1280× 720× 4, by moving the RGBD
camera (Intel RealSense D415) around the configuration in a
random pattern. In total we thus have approximately 30000
RGBD samples of dishwasher configurations with transpar-
ent objects, and approximately 30000 RGBD samples of
dishwasher configurations with opaque objects.

The total time spend on collecting the training data was
less than ten hours (excluding preparation time, i.e. painting
the objects), with no labeling required, which demonstrates
how easy it is to create large datasets with our approach. We
created a paired dataset using the same objects in the same
environment with different object positions for each sample
to quantitatively evaluate our technique. Creating this dataset
took less than eight hours, but only contains 41 samples.
The paired dataset is split into a test set of 15 samples and
a validation set of 26 samples. The test set is used to save
the best model during training, while the validation set is
used in this paper for the evaluation of the models. The
validation set has novel views and object configurations, but
the environment and objects are not novel. The paired dataset
is useful for evaluating the performance of a trained model,
but was not required for training the model itself.

B. Choice of network and modality

In Table II we evaluate results using different network
designs as well as other transparent object depth estimation
techniques. We evaluated two mapping methods, each trained
on the unpaired dataset and evaluated on the paired validation
dataset, one method uses direct depth to depth mapping, the
other uses RGBD to RGBD mapping. For each method we
have tested both the U-Net based generator and the ResNet
based generator. We evaluate each network based on the Root
Mean Square Error (RMSE), Mean Absolute Error (MAE),
Relative error (Rel), percentage of pixels with error less than
5%, less than 10% and less than 25%. All these metrics
are only calculated for the area covered by the transparent
objects in each sample. These metrics are commonly used
for evaluating depth completion effectiveness [30, 4]. We
report the number of trainable parameters as an indicator
of network size. Our results show that for this task the U-
Net architecture produces the best result overall, while the
difference between using RGBD and only Depth is minor.
We also evaluated the following baseline methods on our
validation data:

• Joint Bilateral Filter (JBF) [31]: A statistical method
in which we use the RGB input to modify the depth
map. We use a Gaussian kernel in the experiment.
We performed a grid search to determine the best
parameters, testing out kernel size 3× 3, 7× 7, 11× 11
and 15 × 15, σd values 0.5, 1.0, 2.0, 4.0 and 16.0, σr

values 0.1, 0.5, 1.0, 2.0, 4.0. The reported results were
obtained with kernel size 15 × 15, σd = 16.0 and
σr = 2.0. We chose to compare with JBF as it is a
purely statistical method (no training required) and is
commonly applied to process depth data in industry.

• ClearGrasp [4]: A recent state-of-the-art method for
depth completion of transparent objects by using a
surface normal detection network, object boundary de-
tection network and transparent object segmentation
network. We chose to compare with ClearGrasp as other
recent works have also used it as baseline.

• Ours: RGBD-U-Net, trained on unpaired data. We
picked the RGBD-U-Net variant for the comparison, as
it operates on similar inputs as JBF and ClearGrasp.

Table III shows the qualitative results of applying methods
on some items of our validation set. We show input color,
input depth, our result (using RGBD-U-Net), ClearGrasp
result (cropped), JBF result (cropped) and ground truth depth.
The ground truth depth was acquired by carefully replacing
opaque clones of the objects in the place of the transparent
objects. The depth range for visualization is clipped to
minimum 450 mm, maximum 1000 mm.

As can be seen from the figures, our method often finds
a good solution to filling in missing depth pixels based
on surrounding depth pixels, especially when a distinctive
shape can be observed in the input data. ClearGrasp can
dramatically fail to complete the depth of objects, which
we assume is caused by the complicated geometry (further
discussed below). JBF can produce results that sometimes



TABLE II: Quantitative evaluation of different network architectures and other methods (mean values on validation set)

Network Parameters (G) Parameters (D) RMSE (m) ↓ MAE (m) ↓ Rel ↓ 1.05 ↑ 1.10 ↑ 1.25 ↑

RGBD-U-Net 218,007,172 11,165,441 0.061 0.040 0.072 0.528 0.767 0.940
RGBD-ResNet 35,282,828 11,165,441 0.092 0.074 0.135 0.250 0.482 0.853
Depth-U-Net 217,997,953 11,162,369 0.058 0.035 0.061 0.589 0.861 0.954
Depth-ResNet 35,264,003 11,162,369 0.145 0.128 0.229 0.113 0.232 0.581

JBF - - 0.067 0.048 0.083 0.477 0.688 0.950
ClearGrasp - - 0.090 0.057 0.120 0.404 0.555 0.840

TABLE III: Qualitative results of our method, ClearGrasp and JBF.

Captured Color Captured Depth Our result ClearGrasp result JBF result Ground truth depth

Three samples with the lowest MAE using our method

0.024 0.070 0.039

0.029 0.049 0.043

0.030 0.044 0.038
Three samples with the highest MAE using our method

0.077 0.233 0.051

0.066 0.155 0.060

0.055 0.080 0.079



Fig. 2: A grasp of a transparent object performed by our
robot using our network for point cloud depth completion.

even outperforms our method, but it introduces Gaussian
noise which might complicate downstream tasks.

C. Object manipulation using humanoid robot

We evaluated grasping of transparent objects using a
humanoid robot (RT Corporation Sciurus 17). ROS [32] and
MoveIt [33] were used to control the robot, with motion
planning and sensor processing executed on the built-in Intel
Corporation NUC7i7BNH, and transparent depth estimation
performed on an external notebook (CPU: Intel Core i9-
10980HK). The frame rate of transparent depth completion
was around 2 FPS, using only CPU. We attempted 42 grasps
using 2 objects from our training set: Tall and Wine. We only
attempted grasps in the region in which the robot could grasp
the opaque version of the objects. We use the RGBD-U-Net
network architecture. To select the object to be grasped, we
first capture the background depth map without the object
present. After placing the object, we calculate the difference
between the point cloud with the object present and the point
cloud without the object present, giving us an estimate of the
object position. The X, Y coordinates in the camera image
are translated to a 3D point using the mean depth reported
for the object. We count grasps as successful if the gripper
can firmly grip the object. For the tall glass, 18 out of 21
attempts were successful. For the wine glass, 21 out of 21
attempts were successful. Figure 2 gives an example of a
successfully executed grasp of a transparent object with the
robot.

IV. DISCUSSION AND LIMITATIONS

Our method outperforms ClearGrasp on our dataset. Fig-
ure 3 shows an example pair of surface normals, occlusion
edges and masks generated by ClearGrasp on a sample from
our validation set. As can be seen in the images, it seems
that ClearGrasp underperforms in complex geometry settings
due to an abundance of occlusion edges being present.
Our method is trained end-to-end on RGBD data, so it

does not suffer from this limitation. More details about this
experiment can be found in the online supplemental material.

We have also tried to apply transfer learning on ClearGrasp
using data generated using a custom simulation constructed
using SuperCaustics [34, 35], a transparent object dataset
generator that used real time ray tracing and generates data
that is compatible with ClearGrasp. We have spend roughly
the same amount of time generating the assets (drinking glass
models and dishwasher model) as we have spend recording
training data for our method. Figure 4 shows some example
images of this new dataset. After training for 100 additional
epochs using 3802 samples of additional domain specific
training data added to the ClearGrasp training dataset, we
were unable to get better results than with the base Clear-
Grasp model. More details about this experiment can be
found in the online supplemental material.

A limitation of our system is that our system does not
generalize well to unknown objects, which are either left
unchanged in the output point cloud or are replaced by one
of the objects in our training set. This shows that our system
specifically learns how to complete the depth of objects in
the training set, and does not learn general properties of
transparency. Introducing a larger variety of shapes in the
training set could increase the capability of the network to
generalize to new objects. We performed a small experiment
with four novel objects in the same environment used in
this paper, for which the results are reported in the online
supplemental material.

We trained a network to directly infer depth from trans-
parent depth or RGBD. This has acceptable results in our
case, but there are more sophisticated methods of completing
depth. ClearGrasp for example combines surface normal
vectors, contact/occlusion edges and masks with the original
noisy depth map to complete depth. It is possible to engineer
features such as this using our method, by for example
using an HSV filter to create masks of opaque objects and
generating surface normal vectors from the opaque depth
map, but we leave the exploration of this for future work.

It is likely that there is a combination of hyper-parameters,
loss functions, network designs and gradient normalization
techniques that could improve the results. There are many
choices for adversarial loss functions for GAN’s, but we
did not perform a thorough analysis to compare different
loss functions. Some works suggest that the choice of
loss function is less important than the choice of hyper-
parameters [36], but different loss functions could contribute
to improving the training time and quality of the results. Be-
sides the choice of loss function, there are ways to normalize
the gradients of both the generator and the discriminator. We
only did limited experimentation with this, but we did not
manage to further improve the results.

V. CONCLUSION

We have presented a technique that allows easy creation of
datasets for training the vision system of a robot for perform-
ing transparent object depth completion in real environments
that have complicated geometry. There are many tasks that



(a) Color (b) Boundaries (c) Masks (d) Surface Normals (e) Generated Depth

Fig. 3: Typical output of running ClearGrasp on our validation set.

Fig. 4: Examples of simulated training data. Corresponding boundaries, masks and surface normals were also generated.

we want robots to perform in the future in environments such
as convenience stores and restaurants. We imagine that robots
can have different programs to deal with each task, switching
program depending on the task at hand, with models trained
using the techniques discussed in this paper. In the future
we want to explore using our technique for tasks such as
teaching a robot where to grasp objects, how to segment an
object into parts and how to find particular objects in a scene.

APPENDIX

We use the Adam optimizer [37] with initial learning rate
of 2e−4 for the generator and 1e−4 for the discriminator.
After epoch 100 we start to linearly decrease the learning rate
to 0 for both the generator and the discriminator over 100
epochs. Each network is trained for 200 epochs in total. Each
epoch consists of 1000 training steps. We sequentially train
both generators and both discriminators with one sample
at each step. The activation function for the final layer of
both types of generators is a hyperbolic tangent. Training
of each network can take up to 48 hours using a single
NVIDIA Tesla V100 GPU on a PC equipped with Intel
Xeon E5-2698v4. We trained multiple networks in parallel on
one machine, so training time might be negatively affected.
All implementations use TensorFlow [38]. When loading
the data, we perform random horizontal crops and random
horizontal flips, producing an RGBD patch of 512x512
pixels. Depth is clipped between 450 mm (the minimum
depth of the RGBD sensor) and 2000 mm.

The U-Net generator is adopted from Isola et al. [29,
39]. U-Net is an encoder-decoder architecture with
skip connections. Schematically, the generator encoder
architecture can be represented as C64-C128-C256-
C512-C1024-C1024-C1024-C1024-C1024, the generator
decoder layer as CD1024-CD1024-CD1024-C1024-C512-
C256-C128-C64-C(1/3/4). Ck represents a Convolution-
InstanceNormalization-ReLU layer with k filters. CDk

represents a Convolution-InstanceNormalization-Dropout-
ReLU layer with k filters and a dropout rate of 50%.
All convolution layers are 4 × 4 spatial filters with stride
2, downsampling in the encoder and upsampling in the
encoder. Ordinary ReLU activation is used in the encoder,
while LeakyReLU with slope 0.2 is used in the decoder. In
the final layer of the decoder, C1 is used for Depth only,
C3 for RGB, C4 for RGBD. Skip connections concatenate
activations from layer i to layer n−i. Instance normalization
is used in every layer, except for the first encoder layer.

The ResNet generator is adopted from Zhu et al. [25,
40]. It can be represented as c7s1-64, d128, d256, R256,
R256, R256, R256, R256, R256, R256, R256, R256, u128,
u64, c7s1-(1/3/4). We use 9 ResNet blocks. c7s1-k denotes
a 7×7 Convolution-InstanceNorm-ReLU layer with k filters
and stride 2. R256 denotes a residual block with two 3× 3
Convolution-InstanceNorm-ReLU layers with 256 filters. uk
denotes a 3 × 3 Deconvolution-InstanceNorm-ReLU layer
with k filters and stride 2. Reflect padding is used in the
ResNet blocks to reduce artifacts.

We use a PatchGAN discriminator [41, 42, 29]. The
discriminator architecture can be represented as C64-C128-
C256-C512-C1024. Instance normalization is used in every
layer, except for the first layer. A Leaky ReLU activation
with slope 0.2 is used in every layer. A convolution with
stride 1, filter size 1 and kernel size 4 is used to produce a
discriminated output map.

ACKNOWLEDGMENT

This work was supported by JST [Moonshot R&D][Grant
Number JPMJMS2031]. This research is subsidized by New
Energy and Industrial Technology Development Organization
(NEDO) under a project JPNP20016. This paper is one of
the achievements of joint research with and is jointly owned
copyrighted material of ROBOT Industrial Basic Technology
Collaborative Innovation Partnership.



REFERENCES

[1] Ashutosh Saxena, Justin Driemeyer, and Andrew Y.
Ng. “Robotic Grasping of Novel Objects using Vi-
sion”. In: The International Journal of Robotics Re-
search 27.2 (2008), pp. 157–173. DOI: 10.1177/
0278364907087172.

[2] Ilya Lysenkov, Victor Eruhimov, and Gary Bradski.
“Recognition and pose estimation of rigid transparent
objects with a kinect sensor”. In: in Proc. of Robotics:
Science and Systems. 2012. DOI: 10.15607/rss.
2012.viii.035.

[3] Ilya Lysenkov and Vincent Rabaud. “Pose estimation
of rigid transparent objects in transparent clutter”. In:
2013 IEEE International Conference on Robotics and
Automation. 2013, pp. 162–169. DOI: 10 . 1109 /
ICRA.2013.6630571.

[4] Shreeyak Sajjan et al. “Clear Grasp: 3D Shape Esti-
mation of Transparent Objects for Manipulation”. In:
2020 IEEE International Conference on Robotics and
Automation (ICRA). 2020, pp. 3634–3642. DOI: 10.
1109/ICRA40945.2020.9197518.

[5] Luyang Zhu et al. “RGB-D Local Implicit Function
for Depth Completion of Transparent Objects”. In:
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2021, pp. 4647–4656. DOI: 10.
1109/CVPR46437.2021.00462.

[6] Thomas Weng et al. “Multi-modal Transfer Learn-
ing for Grasping Transparent and Specular Objects”.
In: IEEE Robotics and Automation Letters 5.3 (July
2020). arXiv: 2006.00028, pp. 3791–3798. ISSN:
2377-3766, 2377-3774. DOI: 10.1109/LRA.2020.
2974686.

[7] Xingyu Liu et al. “KeyPose: Multi-View 3D Labeling
and Keypoint Estimation for Transparent Objects”. In:
2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2020, pp. 11599–11607.
DOI: 10.1109/CVPR42600.2020.01162.

[8] Zheming Zhou, Xiaotong Chen, and Odest Chadwicke
Jenkins. “LIT: Light-Field Inference of Transparency
for Refractive Object Localization”. In: IEEE Robotics
and Automation Letters 5.3 (2020), pp. 4548–4555.
DOI: 10.1109/LRA.2020.3001499.

[9] Agastya Kalra et al. “Deep Polarization Cues
for Transparent Object Segmentation”. In: 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2020, pp. 8599–8608. DOI:
10.1109/CVPR42600.2020.00863.

[10] Yiming Qian, Minglun Gong, and Yee-Hong Yang.
“3D Reconstruction of Transparent Objects with
Position-Normal Consistency”. In: 2016 IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR). Las Vegas, NV, USA: IEEE, June
2016, pp. 4369–4377. ISBN: 978-1-4673-8851-1. DOI:
10 . 1109 / CVPR . 2016 . 473. URL: http :
/ / ieeexplore . ieee . org / document /
7780842/.

[11] Haoping Xu et al. “Seeing Glass: Joint Point Cloud
and Depth Completion for Transparent Objects”. In:
Conference on Robot Learning (CoRL). 2021. URL:
https://arxiv.org/abs/2110.00087.

[12] Hongjie Fang et al. “TransCG: A Large-Scale
Real-World Dataset for Transparent Object Depth
Completion and Grasping”. In: arXiv preprint
arXiv:2202.08471 (2022).

[13] Jiaying Lin, Zebang He, and Rynson W.H. Lau.
“Rich Context Aggregation with Reflection Prior for
Glass Surface Detection”. In: 2021 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR). 2021, pp. 13410–13419. DOI: 10.1109/
CVPR46437.2021.01321.

[14] Enze Xie et al. “Segmenting transparent object
in the wild with transformer”. In: arXiv preprint
arXiv:2101.08461 (2021).

[15] Ben Mildenhall et al. NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis. Aug. 2020.
DOI: 10.48550/arXiv.2003.08934. arXiv:
2003.08934 [cs].

[16] Jeffrey Ichnowski et al. “Dex-NeRF: Using a Neural
Radiance Field to Grasp Transparent Objects”. In:
arXiv:2110.14217 [cs] (Oct. 2021). arXiv: 2110 .
14217 [cs].

[17] Floris Erich et al. “Neural Scanning: Rendering and
determining geometry of household objects using
Neural Radiance Fields”. In: 2023 IEEE/SICE Inter-
national Symposium on System Integration. 2023. DOI:
10.1109/SII55687.2023.10039147.

[18] Qiyu Dai et al. “GraspNeRF: Multiview-based 6-
DoF Grasp Detection for Transparent and Specular
Objects Using Generalizable NeRF”. In: 2023 IEEE
International Conference on Robotics and Automation
(ICRA). 2023. URL: http://arxiv.org/abs/
2210.06575.

[19] Justin Kerr et al. “Evo-NeRF: Evolving NeRF for
Sequential Robot Grasping of Transparent Objects”.
In: 2022 Conference on Robot Learning. 2022. URL:
https : / / openreview . net / forum ? id =
Bxr45keYrf.

[20] Kanishka Rao et al. “RL-CycleGAN: Reinforce-
ment Learning Aware Simulation-to-Real”. In: 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2020, pp. 11154–11163.
DOI: 10.1109/CVPR42600.2020.01117.

[21] Daniel Ho et al. “RetinaGAN: An Object-aware Ap-
proach to Sim-to-Real Transfer”. In: 2021 IEEE In-
ternational Conference on Robotics and Automation
(ICRA). 2021, pp. 10920–10926. DOI: 10.1109/
ICRA48506.2021.9561157.

[22] Yingjie Tang et al. “DepthGrasp: Depth Completion of
Transparent Objects Using Self-Attentive Adversarial
Network with Spectral Residual for Grasping”. In:
2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). 2021, pp. 5710–

https://doi.org/10.1177/0278364907087172
https://doi.org/10.1177/0278364907087172
https://doi.org/10.15607/rss.2012.viii.035
https://doi.org/10.15607/rss.2012.viii.035
https://doi.org/10.1109/ICRA.2013.6630571
https://doi.org/10.1109/ICRA.2013.6630571
https://doi.org/10.1109/ICRA40945.2020.9197518
https://doi.org/10.1109/ICRA40945.2020.9197518
https://doi.org/10.1109/CVPR46437.2021.00462
https://doi.org/10.1109/CVPR46437.2021.00462
https://doi.org/10.1109/LRA.2020.2974686
https://doi.org/10.1109/LRA.2020.2974686
https://doi.org/10.1109/CVPR42600.2020.01162
https://doi.org/10.1109/LRA.2020.3001499
https://doi.org/10.1109/CVPR42600.2020.00863
https://doi.org/10.1109/CVPR.2016.473
http://ieeexplore.ieee.org/document/7780842/
http://ieeexplore.ieee.org/document/7780842/
http://ieeexplore.ieee.org/document/7780842/
https://arxiv.org/abs/2110.00087
https://doi.org/10.1109/CVPR46437.2021.01321
https://doi.org/10.1109/CVPR46437.2021.01321
https://doi.org/10.48550/arXiv.2003.08934
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2110.14217
https://arxiv.org/abs/2110.14217
https://doi.org/10.1109/SII55687.2023.10039147
http://arxiv.org/abs/2210.06575
http://arxiv.org/abs/2210.06575
https://openreview.net/forum?id=Bxr45keYrf
https://openreview.net/forum?id=Bxr45keYrf
https://doi.org/10.1109/CVPR42600.2020.01117
https://doi.org/10.1109/ICRA48506.2021.9561157
https://doi.org/10.1109/ICRA48506.2021.9561157


5716. DOI: 10 . 1109 / IROS51168 . 2021 .
9636382.

[23] Ian Goodfellow et al. “Generative Adversarial Nets”.
In: Advances in Neural Information Processing Sys-
tems. Ed. by Z. Ghahramani et al. Vol. 27. Curran
Associates, Inc., 2014.

[24] Xudong Mao et al. “Least Squares Generative Adver-
sarial Networks”. In: 2017 IEEE International Con-
ference on Computer Vision (ICCV). 2017, pp. 2813–
2821. DOI: 10.1109/ICCV.2017.304.

[25] Jun-Yan Zhu et al. “Unpaired Image-to-Image Trans-
lation Using Cycle-Consistent Adversarial Networks”.
In: 2017 IEEE International Conference on Com-
puter Vision (ICCV). 2017, pp. 2242–2251. DOI: 10.
1109/ICCV.2017.244.

[26] Yaniv Taigman, Adam Polyak, and Lior Wolf. “Un-
supervised Cross-Domain Image Generation”. In: In-
ternational Conference on Learning Representations
(ICLR). 2017.

[27] Tongzhou Wang and Yihan Lin. “CycleGAN with
Better Cycles”. In: (). URL: https : / / www .
tongzhouwang . info / better _ cycles /
report.pdf.

[28] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
“U-Net: Convolutional Networks for Biomedical Im-
age Segmentation”. In: Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015.
Ed. by Nassir Navab et al. Cham: Springer Interna-
tional Publishing, 2015, pp. 234–241. ISBN: 978-3-
319-24574-4.

[29] Phillip Isola et al. “Image-to-Image Translation with
Conditional Adversarial Networks”. In: 2017 IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2017, pp. 5967–5976. DOI: 10.1109/
CVPR.2017.632.

[30] Yinda Zhang and Thomas Funkhouser. “Deep Depth
Completion of a Single RGB-D Image”. In: 2018
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. 2018, pp. 175–185. DOI: 10 .
1109/CVPR.2018.00026.

[31] Johannes Kopf et al. “Joint Bilateral Upsampling”. In:
ACM Trans. Graph. 26.3 (July 2007), 96–es. ISSN:
0730-0301. DOI: 10.1145/1276377.1276497.
URL: https://doi.org/10.1145/1276377.
1276497.

[32] Morgan Quigley et al. “ROS: an open-source Robot
Operating System”. In: Proc. of the IEEE Intl. Conf.
on Robotics and Automation (ICRA) Workshop on
Open Source Robotics. 2009.

[33] David Coleman, Sachin Chitta, and Nikolaus Correll.
Reducing the barrier to entry of complex robotic
software: a moveit! case study,” Journal of Software
Engineering for Robotics. 2014.

[34] Mehdi Mousavi, Aashis Khanal, and Rolando Estrada.
“AI Playground: Unreal Engine-Based Data Ablation
Tool for Deep Learning”. In: Advances in Visual

Computing. Cham: Springer International Publishing,
2020, pp. 518–532. ISBN: 978-3-030-64559-5.

[35] Mehdi Mousavi and Rolando Estrada. SuperCaus-
tics: Real-time, open-source simulation of transparent
objects for deep learning applications. 2021. arXiv:
2107.11008 [cs.GR].

[36] Mario Lucic et al. “Are GANs Created Equal? A
Large-Scale Study”. In: Proceedings of the 32nd Inter-
national Conference on Neural Information Process-
ing Systems. NIPS’18. 2018, pp. 698–707.

[37] Diederik P. Kingma and Jimmy Ba. “Adam: A Method
for Stochastic Optimization”. In: International Confer-
ence on Learning Representations (ICLR). 2015. URL:
https://arxiv.org/abs/1412.6980.

[38] Martı́n Abadi et al. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. Software avail-
able from tensorflow.org. 2015. URL: https : / /
www.tensorflow.org/.

[39] Alec Radford, Luke Metz, and Soumith Chintala.
“Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks”. In:
International Conference on Learning Representations
(ICLR). 2016. URL: https://arxiv.org/abs/
1511.06434.

[40] Justin Johnson, Alexandre Alahi, and Li Fei-Fei.
“Perceptual Losses for Real-Time Style Transfer and
Super-Resolution”. In: European Conference on Com-
puter Vision (ECCV). 2016. URL: https://arxiv.
org/abs/1603.08155.

[41] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsu-
pervised Image-to-Image Translation Networks. 2018.
URL: https://arxiv.org/abs/1703.00848.

[42] Chuan Li and Michael Wand. Precomputed Real-
Time Texture Synthesis with Markovian Generative
Adversarial Networks. 2016. arXiv: 1604.04382
[cs.CV].

https://doi.org/10.1109/IROS51168.2021.9636382
https://doi.org/10.1109/IROS51168.2021.9636382
https://doi.org/10.1109/ICCV.2017.304
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/ICCV.2017.244
https://www.tongzhouwang.info/better_cycles/report.pdf
https://www.tongzhouwang.info/better_cycles/report.pdf
https://www.tongzhouwang.info/better_cycles/report.pdf
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2018.00026
https://doi.org/10.1109/CVPR.2018.00026
https://doi.org/10.1145/1276377.1276497
https://doi.org/10.1145/1276377.1276497
https://doi.org/10.1145/1276377.1276497
https://arxiv.org/abs/2107.11008
https://arxiv.org/abs/1412.6980
https://www.tensorflow.org/
https://www.tensorflow.org/
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1603.08155
https://arxiv.org/abs/1703.00848
https://arxiv.org/abs/1604.04382
https://arxiv.org/abs/1604.04382

	INTRODUCTION
	METHOD
	Adversarial loss
	Cyclic loss
	Identity loss
	Complete loss functions
	Network architectures

	EXPERIMENTS
	Dataset creation method
	Choice of network and modality
	Object manipulation using humanoid robot

	DISCUSSION AND LIMITATIONS
	CONCLUSION

